Categories
probability reflection

Life’s Not Fair

The school year is now over for me. That is a bittersweet statement, because I still have mountains of grading and report card comments to do, but there will be no more direct lessons in the 2010/2011 school year. I found myself nostalgic this morning, and began to recount the good times in the classroom. I recalled the probability mayhem that ensued with my Grade 11s. It was very amusing to see them come up with ways to describe “fair”. I would always tell them that I would only do something if it was “fair”. This, to them, meant a coin flip, draw from a hat, or a roll of the die. But whose hat? Who rolls the die? On what surface? Do these factors actually have an impact on “fair”?
 
Most questions with elementary probability include a fair clause. For example:
Categories
classroom structure investigation reflection

Maths’ True Form

I teach mathematics at the high school level, and know all about the various theories surrounding school mathematics. I can still remember the intrigue when the term “Math Wars” was introduced to me through some undergraduate reading. I immediately took to the history of my art, and found a very convoluted and bloody past. The constant pendulum between retention math, new math, back to basics, and now the new-new math is dizzying. Whenever I converse with a colleague about a new way of thinking in math education, I am sure to remind them that we are in a war. It is this idea that has appealed to the more militant teachers (myself included).

Categories
Pythagorean theorem reflection

Life Without Euclid

This post has nothing to do with geometry. I guess I can’t say that exactly (because of the possible geometric representations), but I am not dealing directly with these. I am always intrigued when I think like I want my students to think. It is these moments that keep me going into the classroom hoping for new understandings. There have been times this year where students have made connections that I never have. These innocent realizations are mathematics manifested in its purest form. A similar experience happened to me this morning.

Categories
classroom structure problem posing reflection

Review: The Art of Problem Posing

I consider reading an essential part of my professional development. I enjoy a morning glance through a chapter or two, and like to wind down a winter’s day with a book and a cup of coffee. Sometimes reading is the only way to relax my mind at the end of a day. (Naturally, some professional literature is better at putting me to sleep than others). To this point in my young career, no book has changed my perspective on the teaching and doing of mathematics more than The Art of Problem Posing: Third Edition by Stephen I. Brown and Marion I. Walter. The duo writes quite a bit for “Mathematics Teacher” (the high school journal for the National Council of Teachers of Mathematics) as well. The processes introduced in the book have been crucial to the penning of many posts on this blog. The book creates a framework from which creative mathematics flows.  

Categories
primes reflection

Do Teachers Play with Mathematics?

Since my introduction to the twitterverse and blogosphere, I have been on the lookout for like-minded individuals who share my passion for the teaching and learning of mathematics. I have met numerous people who document their best strategies, and have already been very helpful to me. One such community of learners is the #mathchat gang that meets once a week (and re-opens discussion at a more European friendly time later in the week) to discuss a topic or theme in math education. Although it is often tough to express pedagogical beliefs in 140 characters or less, the conversation is incredibly fruitful. It was during one of the “mathchat”s that I was struck with a particularly convicting, and ironic, realization.

The topic of the conversation was:
 
“How do I promote deep, productive and creative mathematical play?”