Categories

I teach university courses in mathematical problem solving at St. Francis Xavier University during my Summer break. The classes involve initiating numerous problem solving episodes and then interrogating and filtering our collective experience through the lens of current theory in the field. This structure provides plenty of opportunity to workshop new ways to launch tasks, and this year, I began experimenting with a new sort of launch routine that had pleasant results. This post is an attempt to reflect on why that may have been the case.

First, however, you must indulge me by responding to a prompt in five seconds or less.

Categories

## Oops, I forgot: Productive forgetting and convenient remembering

**My good friend Joce Dagenais has translated portions of this post into French here.**

In 2018, I made the cross-country trip to attend and present at the OAME Annual conference in Toronto. The session was attended by a particularly boisterous group of math teachers–all of whom I adore. Emerging as the ringleader of this rag-tag group of pedagogical hooligans was Fawn Nguyen, who, in her notorious brilliance, later distilled the ideas into a classroom routine by the name “Oops, I forgot…“–OIF, for short. This post is in response to requests to elaborate a touch on the idea and provide more support for teachers thinking about implementing it in their practice.

Categories

## FractionTalks.com

I have been thinking about extending the Fraction Talk love ever since I wrote this initial post in June 2015.

I have used them with my grade nine classes as the starter during units on rational numbers. I have taken the larger questions (such as “What possible fractions can be shaded using this diagram?”) as the prompt for entire lessons of student activity. I have used them to create great conversations with grade 7 and 8 students at our school’s annual math fair.

Categories

## Fraction Talks

Discussion is one of the organic ways through which human interaction occurs, but not all discussion is created equal in the math classroom. The tone of discussion relies on the mode of listening (Davis, 1996). Most classroom talk focuses on an evaluative mode of listening. Students are expected to share, compare, and contrast solutions to problems.

I do think that justification of their solutions gets at some important points regarding mathematical reasoning, but would like to move the discussion to center around that exact feature–the reasoning.