A colleague and I have often bemoaned our attempts to teach the concept of scale factor in higher dimensions. A topic that has such beautiful and elegant patterns and symmetries between the scale factors consistently seems to sail directly past the experience of our students. I have tried enacting several tasks with the students including some favourites from the #MTBoS (Mathalicious 1600 Pennsylvania and Giant Gummy Bear). Each time, the thinking during the task seems to dissipate when new problems are offered. It just seems like students have a hard time trusting the immense rate that surface area and volume can grow (or shrink). In the past, I had used digital images of cubes growing after having their dimensions scaled by 2, 3, 4… etc.; students seemed to grasp the pattern yet under-appreciate the girth of 8, 27, 64… etc. times as many cubes.
Category: volume
Solid Fusing Task
The progression followed by most teachers and resources during the study of surface area and volume is identical. Like a intravenous drip, concepts are released gradually to the patients so as to not overdose them with complexity. Begin with the calculation of 2-dimensional areas, and then proceed to the calculation of surface area of familiar prisms. (I say prisms, so a parallel can be drawn to the common structure for finding the volume of said prisms. That is, [area of base x height]). In this way, surface area is conceptualized as nothing more than a dissection of 3-dimensional solids into the now familiar 2-dimensional shapes.
A colleague is a religious McDonalds’ coffee drinker. One day she showed up with a medium coffee and a cream on the side. It was in two separate cups:
One of the coolest experiences in my university training was the opportunity to invite a kindergarten class into our mathematics methods class for a mathematical field trip. Our class was divided into groups of three or four and were given the task of designing a mathematical activity that the students would try. The afternoon was a hit. Each group set up shop around the room and the kids freely moved from station to station as they mastered each activity.
Somewhere along the way, mathematics becomes formalized and stationary. I imagine it is around the time of fractions. I assume this for no better reason than teachers and students alike seem to blame most of their problems on fractions. That is until Grade 10, when polynomial factoring squeezes out fractions as the most hated mathematical procedure.
There are two schools of thought when it comes to PBL:
- Start with a large-scale project and fit the specific outcomes within it, or
- Build toward a larger project with smaller tasks.
This is the finale of a series of blog posts detailing a student posed project. To get the full picture, begin reading at part one:
This is the fourth in a series of posts detailing a student-posed math project. To get the full picture, please read the previous posts beginning with:
This post is the third in a series of posts detailing the happenings of a math project. To better understand the whole story, please start reading at the beginning:
This post will make a lot more sense if you read the framework for the project in “Soft Drink Project Part 1: The Framework“.
I left the classroom energized; I could not remember a time that I was more pleased with a lesson that I had taught. In fact, I wouldn’t even call it teaching. I was observing. The process of brainstorming began organically. I had my doubts that it would continue the following Monday. Typically, students can’t even remember where they sit after a weekend–let alone what task they ended on.
This post is the first in a series describing a set of classes in my Grade 11 Workplace and Apprenticeship class. I have designed the course around the ideals of Project-Based Learning (PBL); students encounter a series of tasks, problems, and prompts that necessitate three crucial qualities: Collaboration, Critical Thinking, and Communication. Each unit leaves ample room for student extensions and mathematical forays into more elaborate pursuits. This unit was no different. Students studied the topics of Surface Area and Volume through a series of tasks, problems, and prompts–one of which ballooned into the subject of this blog series.