O Canada!
The debate about best practice in Canadian math education has exploded once again. This time attracting high profile combatants.
This post is not meant to resolve deep-seated values, but rather provide a perspective that gets lost in the partisan arguments. It wouldn’t take a long time to place me in a camp, but that would be assuming that there are two camps that want drastically different things.
Category: reflection
Twenty-fifteen will be the fifth year that my little corner of the blogosphere has been dedicated to digitally curating my own thoughts and experiences regarding the teaching and learning of mathematics. It represents a wide array of posts regarding a wide array of topics. Much has changed from new teacher status to graduate student, and the posts reflect that. Still, the heart of its posts and pages is pragmatic: I write about classroom events that seem to matter (for some reason or another, they catch my attention) in hopes that other teachers might find the same phenomenon.
I am going to call these episodes: bloggable moments.
I can’t–for the life of me–understand why someone would argue to eliminate high level mathematical reasoning in favour of memorized tricks, but that seems to be the case with those arguing against the Common Core State Standards. I cannot fathom how this can be the case except to chalk it up to a case of “he-said-she-said”. Change (especially in something as resistant to it as mathematics education) breeds ignorance. And Ignorance breeds fear.
Let’s face it: The public is scared of reform efforts and most teachers aren’t far behind.
Last week there was an interesting twitter discussion on the nature of projects versus the nature of problems.
@dandersod@samjshah@k8nowak@leslie_su76 How is Mega M&M a project rather than a problem?
— Dan Meyer (@ddmeyer) July 17, 2014
I was given a section of enriched grade nine students this semester. I decided very early on that the proper way to enrich a group of gifted students is not through speed and fractions. They came to me almost done the entire course in half the allotted time. This essentially alleviated all issues of time pressure.
The beautiful thing about this is we are able to “while” on curiosities that come up during the class (Jardine, 2008). I am not afraid to stop and smell the mathematical roses–so to speak. In a recent tweet I explained it as the ability to stop and examine pockets of wonder. This has been a blessing because our curriculum has become far less of a path to be run and more of the process of running it.
This semester, I’ve been attempting to infuse my courses with more opportunities for students to collaborate while solving problems. This post is designed to examine the shift in student disposition throughout the process.
I have noticed an increased conceptual understanding almost across the board and this is reflected in the differing solutions on summative assessments. It is also nice to see their marks grow on these unit tests. I do not believe that paper-and-pencil tests are the best venues for displaying conceptual understanding, but it is awesome when the two intertwine.
Digitizing Exit Slips
I’ve tried many forms of student written reflection in my classroom. No matter the format, I have always phased them out due to the administrative details and increased time burden. I liked the idea of having students reflecting on their learning, and believe in the benefits of writing across all curricular areas. What I needed was an easy way to orchestrate the process.
What Makes a Task “Rich”?
In my short career, I have seen the death of the lesson. I remember creating ‘lesson plans’ to the exact standards of my college of education, and then never looking at them when I began to teach. I was never really in tune with the rigidity of the plan, but knew that there were certain learning goals I needed to get to by the end of an hour.
The scene has shifted away from the harshness of a ‘lesson’ toward more student-action-centred words like project, problem, prompt, or task. I like these words because they accurately describe what I am trying to do as a teacher–make the students think.
I was alerted to this video by a pre-service teacher that helps in my room every week. Before this post makes any sense, you should watch the video below. Try to watch the whole thing–I found that task very difficult.
This week I had the privilege of chatting with other math educators about an article written by Richard R. Skemp in 1976. We have formed a sort of ad hoc reading group built around reading classic and contemporary pieces of mathematics education research and discussing their application to our daily crafts. The inaugural meeting (so to speak) consisted of Raymond Johnson (@MathEdnet), Chris Robinson (@absvalteaching), Nik Doran (@nik_d_maths), Joshua Fisher (suspiciously un-twitterable), and myself(@NatBanting).
The full conversation–facilitated through Google Hangouts–can be viewed on Raymond Johnson’s blog here.