The best thing about online communities (*IMO*), is the emergence of artefacts from the collected actions of many people. The online math education community (known as the MTBoS) has seen many of these collections throughout the years, most of which are aimed at supporting imaginative mathematics instruction in grade school. Personally, I have felt the community around Fraction Talks explode right under my nose, and it has been a joy to see how the prompts have sponsored amazing student reasoning. A few months ago, I had another idea for a task structure–that I dubbed #MenuMath–and began to collect examples from engaged math teachers. Since then, the collection has grown and become bilingual thanks to the translation work of Joce Dagenais. I love hearing about student and teacher creations, and you are encouraged to submit menus via my contact page if you feel inspired to do so.

# Category: tasks

## Re-Constructing Shapes

For the first time in a decade, I am not reconvening with a high school staff to begin preparations for the school year. (I’m preparing to work with pre-service teachers on a university campus). It feels weird–very weird. It is a day that I look forward to because optimism is a constant across the building. Staff feels fresh, materials are crisp, and possibilities are endless. It sadly belies what’s to come.

Bummer, right?

Much of what appears in mathematics textbooks is what I like to call, *downstream* thinking. Downstream thinking usually involves two features that set the stage for learners. First, it provides a context (however doctored or engineered–often referred to as “pseudo-context”). Second, the problem provides a pre-packaged algebraic model that is assumed to have arisen from that context.

Exactly one month ago, fellow Saskatchewan mathematics teacher Ilona Vashchyshyn tweeted about an area task that she used in her class. Long story short, it captured the imagination of Math Ed Twitter like elegant tasks have a tendency of doing.

The challenge: Write your name so that it covers an area of exactly 100 cm squared.

Love the different strategies students used here. E.g. Leia, who chose to make each letter 25 cm^2. Notice the revisions on the A.#mathchat #MTBoS Cc @PaiMath pic.twitter.com/FowEQoL4I6

— Ilona Vashchyshyn (@vaslona) November 16, 2018

One of the great parts of my job as a split classroom teacher and division consultant is that I get to spend time in classrooms from grades six to twelve. This means I often need to be in one head space to teach my own Grade 12s and then switch gears to act with younger mathematicians. It also means that the classroom experiences are sporadic and involve teachers working in several different places in several different curricula.

On this particular occasion, I was working with a 7/8 split class that had just finished a unit on perfect squares and divisibility rules, and we wanted an activity that could serve as a sort of review of divisibility rules but also reveal something cool about perfect squares. I thought about the locker problem, but it doesn’t require students to factor in order to see the pattern. Instead, I took some of the underlying mathematical principles (namely: that perfect squares have an odd number of factors) and wrapped it in a structure suited for a Friday afternoon.

Every time I teach a unit on fractions, there are many students who insist that they’d rather use decimals, and I don’t blame them. The obvious parallels to the whole numbers make decimals a “friendly” extension from the integers into the rational numbers.^{1} Many of the things school math asks kids to do with rational numbers can be easily transferred into decimals with minimal stress on the algorithms. Such is not the case with fractions. Take addition for example.

## Problem(s) with Triangles

My provincial curriculum scatters trigonometry throughout several high school courses. Right-angled trig appears first as an isolated experience at the Grade 10 level. From there, the two pathways in Grade 11 cover the Sine and Cosine laws, but only one stream (Pre-calculus) continues into the idea of the unit circle and eventually the connections between the side ratios of right-angled triangles, the unit circle, the wave functions, and trigonometric identities. Since trig is doled out in piecemeal portions each semester, I often find that the hidden beauty of trig is masked by things like SOH CAH TOA. (Or, if you dare to place special triangles on the unit circle, SYR CXR TYX ^{1}).

I transferred schools at the end of last year, so for the first time in seven years, every one of my students I meet on the first day of school will be a stranger. This means that the first hour I have with each of the four classes is not only their introduction to the course, but also their introduction to me. It won’t take long for them to make an impression of me, of mathematics, of their classmates, and how I expect us all to co-exist for the next five months or so.

I have written on first day tasks before, but not for several years. In that post I identify four “attributes” of an effective first-day task*. One of the tasks I settled on for this year was The Shoe Sale task from Peter Liljedahl. (Other bloggers have documented work with the problem as well: e.g. Fawn Nguyen and Chris Hunter).

## Solid Fusing Task

The progression followed by most teachers and resources during the study of surface area and volume is identical. Like a intravenous drip, concepts are released gradually to the patients so as to not overdose them with complexity. Begin with the calculation of 2-dimensional areas, and then proceed to the calculation of surface area of familiar prisms. (I say prisms, so a parallel can be drawn to the common structure for finding the volume of said prisms. That is, [area of base x height]). In this way, surface area is conceptualized as nothing more than a dissection of 3-dimensional solids into the now familiar 2-dimensional shapes.

## 100 Rolls Task

**Update November 2020. Jamie Mitchell–a fantastic teacher from Ontario, Canada–sent me this google doc that his student prepared to justify her solution. After you wrestle with the prompt for a while, take a second to read this brilliant response!

Most probability resources contain a familiar type of question: the two-dice probability distribution problem.

Often times, it is accompanied with questions concerning the sums of the faces that appear on each dice.

For example:

*Roll two fair, 6-sided dice. What possible sums can be made by adding the faces together?*

*What is the probability that:*

*a) the sum is 6*

*b) the sum is a multiple of 4*

*c) the sum is greater than 15?*